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ABSTRACT

Missing data problems have typically been under-appreciated in the social sciences. In
practicality, few students or researchers go beyond the default settings of most statistical
packages when conducting analyses on missing data. Four different approaches for handling
missing data will be presented and conducted on a set of simulated missing data where the
missing data follows a partial Missing at Random (MAR) pattern.
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I INTRODUCTION TO MISSING DATA

One of the most common problems that empirical social science researchers
encounter is missing data. However, despite its widespread occurrence, it is still an
underappreciated problem in many disciplines. It is the purpose of this article to clearly
illustrate how missing data can make parameter estimates biased, and to compare the
performance of several different approaches to handling missing data.

IL. PATTERNS OF MISSINGNESS

Little and Rubin (2002), uncovered the importance of missingness patterns, by
- identifying three distinct patterns: Missing Completely at Random (MCAR), Missing at
Random (MAR), and Nonignorable (NI). In the following subsections, suppose that D is a
data matrix incorporating both dependent and independent variables such that D= {Y,X}.
Furthermore, suppose that D can be partitioned into observed and missing observations
D: {Dabs,Dm,.S}. Additionally, let M be a matrix with the same dimensions as D, and allow

M, =1 when M, eD, and M, =0 when M; €D,

2.1. Missing Completely at Random

Data that is MCAR is considered to be the least serious in practice. Theoretically, this
type of data does not introduce bias for parameter estimates if the pattern of missingness is
independent of the data itself, P(M|D)=P(M). The actual P(M )~ BIN(n, p) so that if a
random variable g is based on an underlying discrete event (like the roll of dice),

q-~ DISUNIF( f ,g) and if g is based on a continuous event (like a random number
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generator), g ~ UNIF( f, g). If g follows a discrete distribution, then the probability, p, is
based on the probability mass function of ¢ such that:
1/n, 'q=ql,...,qn ‘
= pm =
p=p f(q) { 0, otherwise

and if g follows a continuous distribution, then p is based on the probability density
function: A
(g-1) f<q<g

p=pdf(q;f,g)={

0 otherwise

Because p is a random probability independent of D, the parameter estimates of a
linear model,

Y=XB+e (1)

are unbiased (Greene, 2000): E( ) B, since

obs ™~ obs mis™ mis

E(B)=E([X0bs'Xobs+XmiS'Xm,.sI [X X, B, +X,. X B D
= £(xx)'[xxB))-

Unfortunately, MCAR missingness patterns are seldom encountered in practice. If a
respondent were to answer or refuse to answer survey questions based on rolls of dice or on

the results of a random number generator, the missingness pattern observed in the data would
be MCAR.

2.2. Missing at Random

In practice, data that exhibits an MAR pattern of missingness is much more serious
than MCAR missingness. The unbiasedness assumption regarding parameter estimates no
longer holds under MAR, because P(M | D)= P(M|D,,,). This problem can be mitigated if

the pattern of missingness can be explained by at least one or more observed variables in D.
In practice, analysts can often correct for MAR missingness by including more variables in
an imputation process (King et al, 2001). This is done by treating each individual D, as a

is

parameter to be estimated. Once estimated, DAm,.s is then used in place of D, and standard

estimation procedures can continue like normal. In linear models such as those shown in
Equation 1, the parameter estimates of the linear model itself are unbiased:

obs*~ obs mis ™ mis

E(B):EUXO,,S'XO,,S+f(m'f(m,.s] [X X, B, +X, X B ])
- E((xxT'[xxB)=p

provided that the imputation procedure allows for E (Dm,s) D, tohold true.
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MAR missingness can take different forms. One example of how data might exhibit
MAR missingness 1s if low assessment scores are less likely to be reported on a survey than
high assessment scores. The pattern of missingness can be explained by assessment scores,
and is thus MAR, provided that at least some survey respondents reported assessment scores.
Imputation procedures also improve their ability to model the missingness pattern if there are
other variables in the model that explain assessment scores.

2.3. Nonignorable

The most serious and difficult pattern of missing data to handle is NI. This occurs
when P(M|D) does not simplify. In this case the pattern of missingness, M, is not
independent of D. More specifically, the pattern of missingness is dependent in whole or in
part on the unobservable values of D, . Therefore, attempting to estimate D, will produce

biased estimates, E(D )¢D

s . leading to biased model estimates E(B)= 8. A pattern of
NI would occur if low assessment scores were less likely to be reported on a survey, and no

other observed variables can predict which respondents have low assessment scores.

It is worthwhile to note that a significant amount of work has been done in the field of
NI nonresponse in experimental designs. Some notable studies include Scharfstein et al
(1999, pp. 1096-1120) use of semi-parametric nonresponse models, Tang's (2003, pp.747-
764) use of the pseudo-likelihood method to identify multivariate regression parameters with
NI missingness in the data, and Qin et al (2002, pp.193-200) use semi-parametric likelihood
to handle NI missingness.

2.4. Missing Data in Social Science

In practice, the line between MAR and NI missingness is blurry. Data may exhibit
MAR-like patterns of missingness, whereby other observed variables may be useful in
explaining the overall pattern of missingness (King et al 2001, Rubin 1996, Schafer 1997).
Yet these patterns of missingness are rarely likely to be completely and truely MAR. More
likely is that some instances of missingness can not be explained by variables included in the
imputation. If the missingness pattern is expressed as explained and unexplained probabilistic

~ ~

portions, P(D,, )= P(D,m.x)+ P(Dm,.s) where P(Dm) is the probability that can be explained
by D, and P(Bm) is the probability that cannot be explained by D, , then any instance

-~

where P(D,m.s
);t D

mis ?

)>0 i1s going to introduce bias into the imputed missing values because

~

E(D

mis

is to then estimate bm,s so that maxI.P(ﬁm )J and mian(ﬁmb )J

with the bias becoming more pronounced as P(ﬁm) increases. The objective

NI. DIFFERENT APPROACHES TO HANDLING MISSINGNESS

The following subsections will briefly discuss several different approaches to
handling missingness in datasets. Overall, the order of these approaches presented will go
from simple to complex.
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3.1. Doing Nothing: Listwise Deletion

One option to handling missing data is to ignore the problem and do nothing. This
option is theoretically viable if and only if the data missingness pattern is truly MCAR.
Specifically, all cells in M must be independent of [Dobs’D ] If this condition is not met

for any cell in M, then P([)m,.s)> 0, thereby introducing bias into parameter estimates. The

impact of this bias can vary, and may result in different parameter estimate magnitudes or
signs of causal or descriptive inferences (Anderson et al 1983).

Further compounding the problem of missingness is what happens to some observed
data when the problem is ignored in multivariate analyses. Most standard multivariate
statistical methods used in practice (linear regression, ANOVA, etc) are incapable of
handling missing observations without correction. This leads many social science researchers
to simply rely on statistical package default settings to handling missing observations without
being fully aware of the assumptions or ramifications of such a choice. In just about every
major statistical software package for social science (SPSS, STATA and SAS among others),
the default mechanism for handling missing data is listwise deletion.

In many ways, listwise deletion is a cure that is worse than the illness. Instead of now
having one missing observation on one variable, listwise deletion eliminates the entire row of
data from the analysis if one observation in one variable is missing. This practice essentially
throws away good data. Table 1 illustrates how listwise actually compounds the problem of
missing data by eliminating validly-observed data points from the analysis. Instead of one
missing observation in Variable #2, listwise deletion actually throws away observations in
Variables #1, #3, and #4 so that the analysis can be conducted.

Table 1: An lllustration of How Listwise Deletion Excludes Data

Variable #1 Variable #2 Variable #3 Variable #4
Observed Observed Observed Observed
Observed Observed Observed Observed
Excluded Missing Excluded Excluded
Observed Observed Observed Observed

This is theoretically valid if the missingness pattern exhibited in the data is truly
MCAR. However, researchers should bear in mind that listwise deletion actually compounds
the problem of missing data, by selectively eliminating observed data points from the
analysis. This is clearly illustrated in Table 1, where one missing observation (1/16 =0.0625
or 6.25% missing) handled by listwise deletion increases the missing problem three-fold
(4/16=1/4=0.25 or 25% missing). If the missingness is not MCAR, listwise deletion is
likely to only magnify the problem of bias since more observations are being systematically
excluded from the analysis.

3.2. Mean Imputation

Another method of dealing with missing data is to use mean imputation. This
approach is quite simple: replace missing observations with the average observed value, such

that D, =D, Vi, j. Mean imputation, much like listwise deletion, only holds valid if the




The Philippine Statistician, 2007 23

missingness pattern is truly MCAR. Additionally, mean imputation is unable to incorporate
additional variables which may be able to explain the some aspects of the pattern of
missingness. So if the missingness pattern in the data is MAR and D, cannot explain the
missingness, then mean imputation is inappropriate and the imputed values are going to be
biased: E (Dm D, . Common sense suggests that it will be difficult if not impossible for

D,,, to say anything meaningful about D, because mean imputation only considers one

variable, j, in its imputation—and it is this same variable that is ei‘;hibiting the missingness

pattern. So while mean imputation does not exacerbate the missingness problem by
discarding data in the same manner as listwise deletion, the inadequate (and 1mpractlcal)
handling of MAR missingness suggests limited usage.

3.3. Multiple Regression Imputation with Stochastic Substitution

Missing data points can also be imputed by modeling the patterns of missingness, and
then using that information to derive “plausible” values to explain the missingness. This
approach works well when the missingness pattern is MAR. This assumption is crucial to
obtaining unbiased parameter estimates. The multiple regression imputation with stochastic
substitution procedure is quite simple. Suppose that D= {Y,Xl,Xz}, and

obs,D,ms] {[ ) m],[X 1ot X 1 mis lX ) ost} where X, is fully observed and Y, X, are only
partlally observed. Regression coefficients are then obtained utilizing [ abs,Dm,.s]:

Y=B,+B X,+B,X,+e
X, =Bl +B'Y+BlX,+¢

Each of the i missing values of Y to be imputed are then constructed as a linear
combination of each of the i" values of X, and X, given B,, B, and e’

Y,=B,+B/X,,+B,X,, +e,

where e, is a randomly chosen residual. The inclusion of e, is important because it acts as a

buffer against “over-correcting” the imputed values. The importance of random noise as a
means to buffer against imputed value over-correction has been discussed elsewhere (Rubin
1977, 1987). The procedure follows in the same fashion, with each variable that contains
missing data being modeled as a dependent variable for the purposes of imputing the missing
data on that variable:

X, =Bl +B'Y,+BlX,, +e!

where €' is a randomly chosen residual. It is important to stress that this procedure depends
on the idea that D, is an MCAR or MAR pattern. In such instances, E (ﬁ): Y, and
E (/\A’ | .)= X, ;. If the missingness follows a NI pattern, the imputed values (and the subsequent
parameter estimates) will be biased such that £ (Y );t Y and E (X . ,);r: X
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3.4 Multiple Imputation: Expectation-Maximization with Importance Resampling
(EMis)

The Expectation-Maximization with Importance Resampling (EMis) algorithm is a
multiple imputation algorithm that is designed to impute D, by creating m number of

datasets where the missing data is imputed with “plausible” estimates. The choice of m has
largely been settled by the work of Rubin (1987) and Wang and Robbins (1998), which
demonstrates that parameter estimates with m=35 imputed datasets are quite reasonably
efficient, and that the relative efficiency of estimates with m =10 is nearly the same as that of
estimates with m=co. This result is also echoed by King et al (2001), who recommend
m=35 to be adequate for most social science research except in extreme cases where
missingness is exceptionally high.

To illustrate how the EMis algorithm works, let 13 denote the simulated value of the

i" observation in the j” variable. Also, let D ; denote the vector values of all observed

variables except j. It is possible to create an 1mputat10n.

~ ~

=D,_,p+
where ﬁ can be calculated from g and I utilizing the likelihood function:

(au’ 2 | obs o ﬁN(Dobs,i I /’lobs,izobs,i)

i=1

Imputation draws are then taken from the conditional predictive distribution of the missing
data, and each individual draw is replaced with that observation's predictive value:

5;,-: P(Dmis IDobs’ﬁ’E)

where 1 and % can be iteratively estimated by finding the maximum posterior estimates

:;5 = (/} A) of each based on the posterior distribution P(y,Z | Dobs,D ) The parameters are

then put on unbounded scales, using the log of the standard deviations and Fisher's z for the
correlations. An acceptance-rejection algorithm is then used to determine whether draws of

¢ are kept or rejected based on whether the follqwmg expression is true (keep ¢ ) or false
(reject 5 ):

% LJIDOIJ
Qe

Note that the right hand side of this proportionality is the ratio of the actual posterior to the
asymptotic normal approximation, both evaluated only at ¢ . '
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It is also worth noting that the estimates generated from the EMis algorithm are
asymptotically identical to estimates generated by other Bayesian algorithms, such as the
Imputation Posterior algorithm (which utilizes Markov Chain Monte Carlo methods), and
frequentist algorithms like the Expectation-Maximization (without importance resampling).
For more information about the EMis algorithm, and how it compares to other notable
algorithms, see King et al (2001) and Honacker et al (2001).

4. MONTE CARLO COMPARISONS

A total of »=1000 observations were generated for / =1000 datasets from a
multivariate normal distribution with mean p =0 and variance-covariance matrix:

' 3

1 04 -03 01 005 04
04 1 01 01 01 04
03 01 1 -01 01 04
01 01 -01 1 01 o4
005 01 01 01 1 04
(04 04 04 04 04 1

7

The values of £ were chosen to mimic conditions typically found in social science data for
the respective variables: {V,X,,X,,X 3 X4 X 5}. Specifically, the generated data 1is

multivariate in nature, with varying covariance levels between the dependent and independent
variables (o,,=04,0,, =-0.3,0,, =0.1,0,, =0.05), and a limited amount of independent

variable interdependency (values of & = {0.1,-0.1}). Note that the last column and row of T

are largely comprised of the value 0.4. This was done specifically to model partial MAR
conditions, since X (which is the variable that corresponds to the last column and row of

o =0.4), is the variable used to generate the patterns of missingness. Allowing for some
covariance between X and the data variables Y, X, X,,X, and X, allows the data to

somewhat fit a MAR definition whereby the existing data can (to some extent) predict the
pattern of missingness. The lower the covariance between X and the data variables, the

more the missingness pattern becomes NI and the less it becomes MAR. ‘A covariance of 0.4
across all data variables means that the missingness pattern is mostly MAR, but not
completely. This is mixed-type of missingness (still mostly MAR) is a typical case in social
science research.

Three new variables were created in each generated dataset to simulate three levels
(10% missingness, 30% missingness, and 50% missingness) of partial MAR-patterned
missingness on Y. To construct these three new variables the quantile values of X, denoted

as x, were taken at 0.9, 0.7, and 0.5. Missingness patterns were then reflected in the newly
created variables:
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v = Y, X5 <Koy,
0%\ Missing X, 5> Ky,

Y= Yo Xis <Ky,
k=07, Missi X..>
Issing - A;s 2> Koq,

v _ Y, Xi,S < Kos,i
k=054 —
Missing X, > Ky,

Regression parameter estimates and standard errors were generated for full datasets as well as
the imputed datasets, with X,, X,, X,, and X, as the independent variables, and ¥ and Y,
as the dependent variables.

It is important to note that several other simulations were conducted by the author
varying the elements of X from positive to negative, and also varying the degree and nature
of the missingness. Changing the elements of X from positive to negative yielded no
significant changes in the results, since the bias measures used in the following sections have
been designed to detect both positive and negative bias. Other varying degrees of missingness
were consistent with the results presented here (more missingness meant more bias). Also,
bias increased as the missingness pattern became less MAR and more NI. These additional

results are not presented here because they do not significantly change the findings, but are
available from the author by request.

4.1 Assessing Coefficient Bias

If parameter estimates are unbiased then E(B)= . Using the mean square error

(MSE), it is thus possible to assess the asymptotic unbiasedness of the regression parameter
estimates since:

1

;ggGZ(Bm—ﬂm)z)ﬂ

m=|

if the procedure for handling the missing data values is unbiased. Figures 1, 2, and 3 map out

the kernel densities of the parameter squared error averaged across the regression estimates
for each of the /=1000 datasets:

£(8,-5,F| @
where p=0,...,4. If B, is unbiased, then the term in Equation (2) should tend toward zero
on the positive side.
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Figure 1: Joint Parameter Estimates with 10% MAR Missingness
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Figure 2: Joint Parameter Estimates with 30% MAR Missingness
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Figure 3: Joint Parameter Estimates with 50% MAR Missingness

One can see that listwise deletion, multiple regression with stochastic substitution and
EMis generated the least biased estimates, and mean substition produced the most biased.
Also note how the tails of each of the kernel densities become heavier as the missingness
increases (note the x-axis range)—as the amount of uncertainty increases, so too does the
distribution of the coefficients.

One may be inclined to wonder why listwise deletion seems to have performed so
well. One possible explanation is that this a large-sample simulation. The problems of
listwise deletion are exacerbated most in small-sample situations (King et al 2001). Also,
keep in mind this simulation recreates partial MAR missingness, not total MAR missingness.
Partial MAR missingness (with other elements of MCAR and NI patterns also acting on the
data) is more likely to reflect social science data, where the variable responsible for the
missingness (X,) is itself unobserved, but other observed variables are partially correlated

with it. Table 2 shows the MSE for each procedure across missingness percentages.

Table 2: Mean Square Error by Procedure and Missingness

Procedure 10% Missing 30% Missing 50% Missing
LD 0.00134 0.00818 0.02094
MEAN 0.00203 0.01246 0.02729
OoLS 0.00141 0.00834 0.02133
EMis 0.00136 0.00822 0.02086

As can be seen from Table 2, LD performed comparable to Multiple Regression with
Stochastic Substitution and the EMis algorithm, only taking a small uptick in coefficient bias
when 50% of the rows are observed. Mean substitution consistently produced the most biased
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parameter estimates under each condition, but its performance was only moderately worse
_ than the other approaches.

'4.2 Assessing Standard Error Bias

 Standard errors of parameter estimates are important to researchers, because of their
usefulness in hypothesis testing and assessing parameter significance. However, biased
standard errors can lead to Type I and Type II errors. Assessing the bias of standard errors
can be done by examining if F [se(B) se(B). The bias can be further isolated so that the
inclination toward either a Type I or Type II error is probabilistically known:

=0  Unbiased
se(B)-se(8X<0 TypelError
>0 TypellError

where P(se(B)-se(B)): N (0,02 )

Figures 4 shows the joint standard error bias for each procedure as a deviation from
_ the fully observed joint standard error for each level of missingness. Listwise deletion and
mean substitution led to the greatest amount of bias in estimated standard errors. The
direction of the bias is also important, particularly for the listwise deletion estimates, since a
negatively biased standard error increases the likelihood of Type I errors. Additionally,
parameter standard error bias becames dramatically more pronounced in estimates that use
listwise deletion and mean substitution as the level of missingness increases. The positive
bias in the standard errors when mean substitution is used makes Type II errors more likely
since the inflated standard errors are going to lead to lower the values of test statistics.

.01

.005

] iniir=auil

SE Deviation
0

L

-.005

——— i ey
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Figure 4: SE Bias by Procedure and Missingness Level
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Multiple regression with stochastic substitution and the EMis algorithm imputed
observations that lead to less-biased standard errors in the estimated model, especially when
missingness is high. The increase in the standard error bias as the missingness level increased
was minimal. Table 3 shows the numeric values of the joint standard error biases. EMis
imputed values led to the least biased standard errors when missingness was over 10%,
though there was little significant difference between EMis and multiple regression with
stochastic substitution.

Table 3: Value and Direction of SE Bias Based on Missingness Level

Procedure 10% Missing 30% Missing 50% Missing
LD -0.00062 -0.00362 -0.00885
MEAN 0.00169 0.00437 0.00731
oLs 0.00085 0.00156 0.00202
EMis 0.00085 0.00151 0.00198

V. CONCLUSION

When deciding how to handle missing data, it is important for the researcher to be
aware of the underlying assumptions inherent in missing data procedures. Linear models
utilizing listwise deletion and mean imputation would produce unbiased estimates of both
parameter estimates and standard errors that are unbiased if the data missingness follows an
MCAR pattern. Unfortunately, this seldom happens in practice.

Multiple regression with stochastic substitution and the EMis algorithm impute
missing data well for both MCAR and MAR patterns of missingness. The results of this
analysis show relative unbiasedness in parameter estimates and standard errors, even when
the missingness pattern is only partly MAR. However, a serious limitation of multiple
regression with stochastic substitution is that it parametrically assumes a linear relationship
which may be inappropriate--thereby leading to biased imputations. EMis imputations may
produce biased estimates if the normal approximation is inappropriate, though the heavier-
tailed s-distribution with a larger variance matrix and additional factors, can correct this
problem (King et al 2001).

All GAUSS files and code used in this article are available from the author.
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